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ABSTRACT  

 

An organism’s ability to respond to threats in its environment can influence its fitness, as 

well as the community in which that organism lives.  A common type of threat that 

organisms face is the threat of predation and there are many ways prey species respond to 

this threat.  Some common ways include altering morphology, behavior or life- history 

strategy.  Changes in morphology can make it harder for predators to consume prey while 

changes in behavior can decrease the probability of prey encountering a predator.  Shifts 

in life-history strategy can alter when organisms are exposed to predation and increase 

the likelihood of survival in the event of a predator-prey encounter.   

 

Marine gastropods can respond to a wide array of threats by altering their morphology, 

behavior, or life history.  Because marine gastropods are highly plastic, they are a 

promising clade to further our understanding of inducible defenses and how these 

defenses relate to the surrounding community. For my thesis, I conducted two studies to 

examine how two species of marine gastropods respond to predators in their 

environment.   

 

In the first study, I ran two experiments to test whether cues from predators induce plastic 

defenses in Littorina sitkana.  In the first experiment, snails where exposed to either a 

predator treatment, which consisted of waterborne cues from the predatory crab 

Hemigrapsus nudus and crushed conspecific snails, or a control treatment, which 

consisted of cues from uncrushed conspecific snails.  Shell thickness, strength, and size 
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were measured after nine months of exposure to treatments.  Snails exposed to the 

combination of crabs and crushed conspecifics showed no change in shell thickness or 

strength but did have both narrower and shorter shells than control snails.  In the second 

experiment, I tested whether cues from H. nudus or crushed conspecifics altered the 

behavior or feeding patterns of L. sitkana.  Snails were exposed to waterborne cues from 

either H. nudus only, crushed conspecific snails only, a combination of H. nudus and 

crushed conspecific snails, or uncrushed conspecific snails only.  Crushed conspecifics 

and the combination of crushed conspecifics and H. nudus caused an increase in an 

escape response in snails while crushed conspecifics only caused a reduction in snail 

grazing. 

 

In the second study, I completed three experiments to test how Nucella lamellosa alters 

its reproductive behavior in response to different combinations of organisms that are 

predatory and non-predatory on encapsulated N. lamellosa embryos.  In the first 

experiment, I tested how adult N. lamellosa responded to cues from the crab 

Hemigrapsus oregonensis and the isopod Idotea wosnesenskii (both of which consume 

encapsulated embryos but not adult snails).  Adult snails were exposed to waterborne 

cues from H. oregonensis only, I. wosnesenskii only, both H. oregonensis and I. 

wosnesenskii, or a control with no crabs or isopods.  I measured how these treatments 

altered the timing and rate at which egg capsules were laid, as well as the physical and 

energetic characteristics of the capsules.  I found that adult whelks delayed depositing 

capsules and reduced the rate of capsule deposition in response to predatory crabs, and to 

isopods, but only if isopods were present in combination with crabs.  No change was 
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observed in the physical or energetic characteristics of the deposited capsules.  The 

results of this experiment showed that crabs had a strong effect on snail reproduction.  

This led to our second experiment, which examined whether snails respond differently to 

crab species that do or do not pose a threat to encapsulated snails.  In this experiment I 

measured the timing and rate of capsule deposition as well as the strength required to 

pierce the wall of an egg capsule.  Snails were exposed to cues from H. oregonensis, 

Petrolisthes eriomerus, Pugettia spp., Pagurus granosimanus or a control with no crabs.  

P. eriomerus, a species that does not prey on encapsulated snails, was the only species to 

induce a delay in capsule deposition.  P. eriomerus and two other crabs, one that does (H. 

oregonensis) and one that does not (P. granosimanus) consume capsules, lowered the rate 

of deposition.  In the third experiment, I tested whether different densities of conspecific 

adult snails alter snail reproductive behavior as previous studies have shown that cues 

from conspecifics can alter traits associated with inducible defenses.  In this experiment I 

measured the timing and the rate of capsule deposition, as well as the energy invested 

into capsules in response to different densities of conspecific snails.  Adult snails were 

exposed to either a high density of conspecific snails, a low density of conspecific snails 

or a control with no additional snails.  I found that both treatments with additional snails 

accelerated the timing of capsule deposition relative to the control, but that the low and 

the high density treatments were not different from each other.  I observed no difference 

in the rate of capsule deposition or in the energy invested into the capsules between the 

treatments. 
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I show that L. sitkana does not alter shell thickness in response to predation, but it does 

decrease its shell size.  It is possible that thick shells have become a fixed as opposed to a 

plastic trait in L. sitkana.  Additionally, L. sitkana decreases its grazing and increases its 

crawl away behavior in response to cues from predators.  These findings are consistent 

with responses found in previous studies and suggest that Cancer productus may be the 

predator driving selection for inducible defenses in L. sitkana.  I also show that adult N. 

lamellosa can alter their reproductive behavior in response to organisms that pose a threat 

to their offspring but do not threaten the adult snails themselves.  However, in some 

cases, the level of threat posed by a species of crab was a poor predictor of how adult 

snails would respond.  Adult N. lamellosa also alter their reproductive behavior in 

response to elevated densities of conspecific snails.  All shifts in reproductive timing by 

adults were in the same direction as shifts in embryonic snail’s time of hatching seen in 

other studies.  Cues from H. oregonensis delayed time to hatching in embryonic N. 

lamellosa and delayed capsule deposition by adults.  Similarly, elevated levels of 

conspecific snails accelerated both time to hatching and the time at which capsules were 

deposited.  This highlights the importance of studying how biotic cues affect multiple 

life-history switch points of the same organism. 
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CHAPTER 1: THE SIGNIFICANCE OF INDUCIBLE DEFENSES 

 

Phenotypic plasticity is an organism’s ability to express multiple phenotypes in response 

to different environments.  Different abiotic and biotic factors provide cues that trigger 

organisms to alter their morphology, behavior, physiology or life-history. These plastic 

responses are often adaptive and can increase an organism’s fitness within a variable 

environment.  This may cause organisms to shift phenotypes in conjunction with shifting 

selective pressures in their surroundings.  Common mechanisms that can drive plastic 

responses include climatic cycles, food availability, inter and intra-specific competition, 

and predator-prey interactions (Via et al. 1995, Mousseau and Fox 1998, Agrawal 2001).  

Responses that occur when prey organisms adaptively alter their phenotype in response to 

predators are called inducible defenses.  

 

From an ecological perspective there are many reasons to study inducible defenses.  

Inducible defenses allow organisms to express a range of phenotypes in response to a 

variable presence or type of predatory threat, and reduce the risk of death or injury from 

that predatory threat (Warkentin 1995, Agrawal 2001, Agrawal et al. 2002, Lagerhans 

and DeWitt 2002, Buckley et al. 2005).  As inducible defenses can alter an organism’s 

fitness, there can be subsequent changes to the biotic community that the prey organism 

exists within (Lively 1986, Harvell 1990, Fortin et al. 2005).  Plastic defenses can occur 

at a wide range of life history stages, from encapsulated embryos to adults, making them 

important processes throughout an organism’s lifetime (Palmer 1990, Warkentin 1999, 

Relyea 2003, Beladjal et al. 2007, Gomez-Mestre et al. 2008a, Aranguiz-Acuna et al. 
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2011).   Because inducible defenses alter an organism’s fitness, and can be found at all 

points in an organism’s lifetime, it is important to understand how these process work in 

order to gain a better understanding of community dynamics. 

 

Two common ways organisms employ inducible defenses is through altering their 

morphology and through altering their behavior.  Prey can alter their morphology by 

developing large spines (Harvell 1992, Gowda 1997), thick shells (Appleton and Palmer 

1998), or by attaining a size refuge (Teplitsky et al. 2004).  Some common ways prey 

alter their behavior is by avoiding the areas frequented by predators or by increasing the 

amount of time they spend in sheltered habitat (Marko and Palmer 1991, Turner and 

Montgomery 2003, Gochfeld 2004, Fortin et al. 2005).  These changes in phenotype can 

reduce the risk of an encounter with a predator and maximize the fitness of the prey if an 

encounter does occur.  For my thesis, I examined how two species of marine gastropods 

respond to different predatory and non-predatory organisms that they would be likely to 

encounter in their environment. 
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CHAPTER 2: INDUCIBLE DEFENSES IN SHELL MORPHOLOGY AND 

FORAGING BEHAVIOR IN A LITTORINE SNAIL 

 

INTRODUCTION 

 

In many species of marine gastropods, increased shell thickness is a common response to 

feeding predators (Appleton and Palmer 1988, Lakowitz et al. 2008, Bourdeau 2009, 

Freeman et al. 2009, Bourdeau 2010).  There is evidence that this response provides 

protection by making it harder for predatory crabs to crush a snail’s shell (Pakes and 

Boulding 2010).  Many species of marine gastropods also alter their behavior in response 

to feeding predatory crabs and these responses too provide protection from predation 

(Marko and Palmer 1991, Turner and Montgomery 2003, Gochfeld 2004, Fortin et al. 

2005).  As these plastic responses can change the snail’s survival, changes in shell 

thickness and snail behavior can cause subsequent changes in the community that the 

organism exists within (Nagarajan et al. 2008). 

 

Littorina is a common genus of marine gastropod that influences community dynamics 

through their grazing and as a common prey item for other intertidal animals (Norton et 

al. 1990).  Littorina species express a wide array of behavioral and morphological 

inducible defenses.  L. obtusata, L. subrodundata, L. littorea, L. sitkana, L. saxatilis and 

L. scutulata all alter their shell morphology in response to waterborne cues from 

predatory crabs feeding on conspecific snails (Fig. 1) (Trussell 1996, DeWolf et al. 1997,  
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Figure 1.  A phylogeny of the genus Littorina showing the species that have known 
morphological and behavioral inducible defenses.  Question marks mean this response 
has not yet been investigated.  Based on the phylogenetic work of Reid et al. (2012). 
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Yamada et al. 1998, Jacobsen and Stabell 1999, Rochette and Dill 2000, Trussell 2000, 

Keppel and Scrosati 2004, Dalziel and Boulding 2005, Hollander et al. 2006, Brookes 

and Rochette 2007, Vaughn 2007, Hollander and Butlin 2010).  Some species, such as L. 

saxatilis and L. littorea, alter their shell shape and size while L. obtusata and L 

subrotundata thicken their shells in response to cues from predators.  L. scutulata 

veligers decrease aperture size if exposed to predator cues (Vaughn 2007).  L. littorea, L. 

sitkana, and L. scutulata behaviorally avoid predators when exposed to these same cues 

(Yamada et al. 1998, Jacobsen and Stabell 1999, Rochette and Dill 2000, Keppel and 

Scrosati 2004).  

 

Within the Littorina genus, only L. littorea, L. obtusata and L. subrodundata are known 

to increase their shell thickness in response to crabs feeding on conspecific snails 

(Trussell 1996, Dalziel and Boulding 2005, Bibby et al. 2007).  These three species are 

found throughout the different branches of the Littorina genus (Fig. 1) (Reid et al. 2012).   

Little work has been done on whether other species within this genus also thicken their 

shells in response to predators.  This raises the question of whether shell thickening is 

present throughout the Littorina genus.   

 

L. sitkana is a species likely to express plastic shell thickening in response to predatory 

crabs as their thick shells can deter predation when compared to other thinner shelled 

Littorina species (Boulding et al. 1999).   Additionally, L. sitkana responds both 

morphologically and behaviorally to crushed conspecifics by decreasing shell length and 

moving higher in the intertidal (Yamada et al. 1998, Rochette and Dill 2000).  Having 
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smaller shells and moving higher in the intertidal decreases the likelihood of an 

encounter with the predatory crab Cancer productus, that selects for larger shelled snails 

in the mid to low intertidal zone (Yamada and Boulding 1998, Yamada et al. 1998).  

However, it is unknown whether L. sitkana can plastically thicken its shell.  Additionally, 

it is unlikely that C. productus would induce thicker shells in L. sitkana as C. productus 

selects for the snails with the largest shells, which are likely to be the thickest.  

Hemigrapsus nudus crabs are also known to prey on L. sitkana, but little work has been 

done to determine how the L. sitkana respond to them (Yamada and Boulding 1998).   L. 

obtusata and L. subrotundata, two species very closely related to L. sitkana (Fig. 1), both 

plastically thicken their shells in response to predatory crabs and L. subrotundata does so 

in response to H. nudus.  Because L. sitkana alters its shell size in response to predators 

and shell thickening is present in closely related species, I hypothesized that L. sitkana 

would thicken its shell in response to cues from H. nudus crabs feeding on conspecifics.   

 

In this study I investigated whether predatory crabs feeding on crushed conspecifics 

induce a change in the shell thickness, shell morphology, or behavior of L. sitkana.  To 

test for morphological responses, I exposed L. sitkana to H. nudus crabs feeding on 

conspecific snails for nine months, and recorded changes in shell morphology and 

structure.  To test for behavioral responses, I exposed L. sitkana to crabs feeding on 

conspecific snails and recorded snail feeding rates and habitat use. 



 7 
 

METHODS 

 

In this study, I performed two experiments.  In the first experiment, I exposed Littorina 

sitkana to either waterborne cues from Hemigrapsus nudus and crushed conspecifics or to 

water without these cues and measured the effect on shell morphology and shell strength. 

In the second experiment, I exposed L. sitkana to one of four treatments: cues from 

crushed conspecifics, cues from H. nudus, cues from H. nudus + crushed conspecifics or 

a no-cue control.  I measured the effect of these treatments on snail grazing and the 

amount of time snails spent utilizing different microhabitats within the aquaria.  

 

In both studies L. sitkana and H. nudus were collected from Shannon Point Beach in 

Anacortes, WA.  Snails and crabs were transferred from Shannon Point to the Biology 

Department of Western Washington University in separate five gallon buckets.  Once in 

the lab, snails and crabs were held in separate 80 L aquaria in a 10 oC cold room until 

they were transferred to their experimental aquaria.   

 

Effect of crabs on shell morphology and strength 

 

This study began in May of 2010.  After snails had been transferred into the cold room 

and had a week to acclimatize, twenty experimental snails were placed as a group in 175 

ml tea strainers in 20 L aquaria.  This ensured that snails would be exposed to waterborne 

cues from the treatments, yet prevented them from leaving their experimental enclosure.  
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These snails were exposed to one of two treatments.  The first treatment consisted of 

two H. nudus crabs fed five mechanically crushed and five non-crushed L. sitkana every 

two weeks.  Crabs were held in a plastic container with holes drilled in it.  These holes 

allowed waterborne cues from the crabs and crushed conspecifics to flow freely 

throughout the tank but prevented the crabs from actually disturbing the experimental 

snails.  The other treatment was a control that had ten uncrushed L. sitkana, and no H. 

nudus within the plastic containers.  There were 18 replicate aquaria per treatment. 

 

Experimental snails were fed ulvoid algae ad libitum during the experiment.  Each 

aquarium had an electric filter to remove particulate matter.  The carbon socks were 

removed from the filters in an effort to prevent absorption of the chemical cues from the 

crabs.  Snails were exposed to their treatment for nine months.   

 

In March of 2011, all snails were frozen in an -80 °C freezer for later analysis of shell 

length, width, lip thickness, and strength.  I haphazardly selected ten snails for 

measurements from each aquarium and the values were averaged to yield one value per 

aquarium.  Shell length was measured from the base of the siphonal canal to the apex of 

the shell.  Shell width was measured at the widest part of the shell across the first whorl, 

perpendicular to the length measurement.  Lip thickness was measured on the midsection 

on the apertural lip.  Measurements of shell length, width, and lip thickness were all made 

using digital calipers accurate to 0.01 mm.  Shell strength was measured using a 

Mechanical Test Systems (MTS) load cell that was sensitive to 0.004 N.  Snails were 

placed aperture down and the load cell applied pressure on the first whorl of the shell 
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until the shell cracked.  The force at which the shell cracked was recorded as the 

strength of the shell.  Treatments were compared using ANOVA except for shell strength, 

which was analyzed with ANCOVA with length as a covariate to account for the fact that 

larger shells were overall stronger than smaller shells independent of treatment. 

 

Effect of crabs and crushed conspecifics on feeding and habitat use 

 

This study was carried out in February 2012.  After snails had been transferred into the 

cold room and had one week to acclimatize, six snails were placed as a group in a 15-cm 

diameter glass bowl covered by a screen inside a 20 L aquarium.  The screen ensured that 

snails would be exposed to waterborne cues from the treatments yet could not leave their 

experimental enclosure.  Experimental snails were exposed to one of four treatments: a 

crushed conspecifics treatment consisting of five mechanically crushed L. sitkana; a H. 

nudus treatment that contained two live H. nudus crabs; a treatment with both H. nudus 

and crushed conspecifics; and a control with five uncrushed conspecifics and no crabs.  

All treatment organisms were held in a plastic container that had holes drilled into it, 

allowing waterborne cues to flow freely through the tank while preventing any of the 

treatment organisms from actually disturbing the experimental snails.  A small rock was 

also placed in the watch glass to serve as shelter.  This allowed us to measure how 

frequently snails would use shelter when exposed to cues from predators.  Each aquarium 

had an individual electric filter to remove particulate matter.  The carbon socks were 

removed from the filters in an effort to prevent absorption of chemical cues.  Snails were 

exposed to their treatment for three days and there were six replicates per treatment. 
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The experimental snails were given a pre-weighed piece of ulvoid algae (0.2 g to 0.5 g) 

and allowed to eat ad libitum for three days while exposed to their treatment.  Each tank 

also had a second piece of algae that was not subject to snail consumption.  This second 

piece of algae allowed me to calculate the rate of growth for algae within a tank with no 

snail grazing.  Mass and area were recorded for both pieces of algae at the beginning and 

end of three days.  Algal mass was determined using a digital scale sensitive to 0.001g 

and all algae was blotted dry before weighing.  To calculate the growth of the control 

piece of algae, I used the equation:  

 

final ulvoid mass = initial ulvoid mass * e(g*t)  

 

where g is an algal growth parameter and t is the time of algal growth, in this case 3 days. 

This yielded the equation 

 

g= (ln(final ulvoid mass / initial ulvoid mass))/t 

 

With the growth parameter for each control piece of algae, I calculated the rate of grazing 

for the experimental piece of algae using the equation:  

 

final ulvoid mass = initial ulvoid mass * e(g-gr*t)  
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Where g is the growth parameter calculated for the control piece of algae and gr is the 

grazing parameter (the effect of snail grazing on algal growth). The grazing parameter is 

a unit-less number that is a relative quantification of how much algae snails in a tank 

consumed.  I then solved for gr yielding the equation: 

 

gr=g-(ln(final ulvoid mass / initial ulvoid mass))/t  

 

Snail habitat use was also recorded by noting where snails were inside the watch glass. 

The location of the snails was documented three times a day throughout the course of the 

three-day experiment.  Observations were made roughly at 9am, 12pm and 3pm.  The 

possible places that snails could use were: the bottom of the glass, the bottom corner of 

the glass, the side of the glass, the top corner where the glass met the mesh, the mesh top, 

the ulvoid algae, on the rock, or under the rock (Fig. 2).  I then totaled the number of 

observations that occurred at a given location over the course of the three day experiment 

and divided it by the total number of possible observations per tank (9 observations per 

snail and 54 observations per tank).  This allowed me to calculated the percentage of 

observations that occurred at a given location. There were also three meta-categories used 

when recording habitat use.  These categories were feeding, exposed, and sheltered.  A 

snail was only considered feeding when it was found on the algae.  A snail was 

considered exposed if it was on the bottom of the glass, the side of the glass, the top 

mesh, or on the rock.  A snail was also considered exposed if it was feeding, thus feeding 

a subcategory of exposed.  A snail was considered hiding  
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Figure 2.  Possible habitats within the glass watch glass that snails could utilize. 
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if it was found in the bottom corner of the glass, the top corner of the glass or 

underneath the rock.  I calculated the percentage of observations within these three meta-

categories the same way that I calculated the individual categories. 

  

Differences in the grazing parameter as well as percentage of observations classified as 

hiding within the tank were analyzed using a one-tailed two-sample T test.  Additionally 

to be consistent with other studies, I tested to see if snails exposed to cues from predators 

utilized the upper corner of the watch glass more frequently.  These studies have found 

that when exposed to predation cues, L. sitkana snails will move upwards within their 

habitat (Yamada et al. 1998 Rochette and Dill 2000).  All treatments were compared 

against the control and a one-tailed t-test was used because I expected cues from 

predators to reduce the amount of algae consumed and increase the use of habitat 

considered hiding.
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RESULTS 

Effect of crabs on shell morphology and strength 

 

There were no differences in shell lip thickness between control snails and snails that 

were exposed to predation cues (Table 1).  Snails that were exposed to predation cues had 

both shorter and narrower shells compared to control snails (Table 1).  Snails exposed to 

Hemigrapsus nudus + crushed conspecifics had an average shell width of 9.62 mm (± 

0.10 SE) and length of 9.99 mm (± 0.11 SE) while control snails had an average shell 

width of 10.09 mm (± 0.09 SE) and length of 10.62 mm (± 0.12 SE) (Fig. 3).  Thus, 

snails that were exposed to predation cues had 6.0% shorter and 4.6% narrower shells 

than control snails.  

 

I found no difference in strength between treatments when shell size was taken into 

account (Table 1). Larger shells were harder to break than smaller shells independent of 

treatment and there was no difference in shell strength between treatments when shell 

size was used as a covariate.  The ANCOVA assumption of parallel lines between 

treatments was met as the interaction between shell length and treatments was not 

significant.  On average, it took 116.8 N (± 3.6 SE) to crush a snail shell. 
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Table 1.  Results of ANOVA for lip thickness, shell width, shell length and shell 
strength.  ANCOVA for shell strength is shown with shell length as a covariate. 
 
Effect df Sum of Squares F value P value 

Lip Thickness         

Treatment 1 0.00066 0.25 0.62 

Residuals 34 0.091   

Shell Width     

Treatment 1 2.02 12.76 0.001 

Residuals 34 5.37   

Shell Length     

Treatment 1 3.53 14.63 0.0005 

Residuals 34 8.21   

Shell Strength     

Length 1 176.74 19.5 0.0001 

Treatment 1 3.21 0.355 0.55 

Residuals 33 299.03   
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Figure 3. A) Snail shell width and B) shell length when L. sitkana was exposed to cues 
from H. nudus + crushed conspecifics , or to a no cue control.  Each treatment had 18 
replicates.  Error bars denote standard error. 

A 

B 
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Effect of crabs and crushed conspecifics on feeding and habitat use 

 

Snails exposed to just crushed conspecifics consumed less algae than control snails.  The 

grazing parameter for control snails was 0.13 (± 0.037 SE) and 0.046 (± 0.027 SE) for 

snails exposed to cues from crushed conspecifics (Fig. 4).  Snails that were exposed to H. 

nudus, as well as the combination of H. nudus + crushed conspecifics, were not 

significantly different from the control (Table 2). 

 

Snails that were exposed to crushed conspecifics or cues from H. nudus +crushed 

conspecifics utilized the upper corner of the watch glass more often than control snails 

did (Fig. 5).  Snails that were exposed to cues from crushed conspecifics and H. nudus 

+crushed conspecifics were found in the upper corner of the watch glass for 49% (±4.3 

SE)  and 47% (±3.3 SE) of the observations respectively while control snails were found 

in the upper corner of the watch glass for 33.74% (±4.1 SE) of the observations.  Snails 

that were exposed to H. nudus were not significantly different from the control (Table 3). 

There was no difference in the frequency at which snails utilized hiding habitat between 

treatments (Table 3). 
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Figure 4.  Grazing parameters calculated for grazing L. sitkana.  Snails were exposed to 
crushed conspecific snails, caged H. nudus crabs, both crabs and crushed snails, or a 
control with no crabs and uninjured snails.  Each treatment had six replicates.  Error bars 
denote standard error. 



 19 
Table 2. One tailed treatment t-tests comparing grazing parameters of snails in the 
three treatments to the control. 
 
 
Effect t df P value 

Grazing Parameter    

   Crushed vs. Control -2.6 6.1 0.035 

   Crab vs. Control -1.5 10 0.46 

  Crushed + Crab vs. Control -1.07 9.84 0.25 
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Figure 5.  Percent of observations recorded in the upper corner of the watch class by L. 
sitkana. Snails were exposed to crushed conspecific snails, caged H. nudus crabs, both H. 
nudus crabs and crushed snails, or a control with no crabs and uninjured snails.  Each 
treatment had six replicates.  Error bars denote standard error.  
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Table 3.  One tailed treatment t-tests comparing the percent of observations recorded at 
a particular location to the control.   
 
Effect t df P value 

Hiding       

  Crushed vs. Control 1.74 10 0.056 

  Nudus vs. Control -1.06 8.74 0.84 

  Crushed+Nudus vs. Control 1.07 9.83 0.15 

Upper Corner    

  Crushed vs. Control -2.33 9.74 0.021 

  Nudus vs. Control -0.21 7.72 0.42 

  Crushed+Nudus vs. Control -2.21 8.71 0.027 
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DISCUSSION 

 

In this study, I found that Littorina sitkana does not alter its shell thickness in response to 

Hemigrapsus nudus feeding on L. sitkana. One possible explanation as to why I did not 

see shell thickening in L. sitkana is that many of the snails used in this study had a shell 

length greater than 10 mm, the threshold beyond which Hemigrapsus nudus can no 

longer effectively consume L. sitkana (Yamada and Boulding 1998).  Thus many of the 

snails in this study did not need a plastic defense from H. nudus as they already had a 

constitutive one.  In other systems, studies have shown and models predicted that some 

prey species of different size classes will lose their plastic defenses as they develop more 

constitutive ones (Riessen and Trevett-Smith 2009, Rabus and Laforsch 2011).  It is 

possible that L. sitkana employs a similar strategy and future studies would need to look 

specifically at how snails of different size classes respond to feeding H. nudus crabs. 

 

It is also possible that shell thickening has become a fixed trait in L. sitkana.  Both L. 

subrotundata and L. obtusata, two species that are adjacent to L. sitkana on the Littorina 

phylogenetic tree, show plastic shell thickening (Trussel 2000, Dalziel and Boulding 

2005, Reid et al. 2012).  This suggests that the common ancestor of these species would 

be able to plastically thicken its shell.  Additionally, L. sitkana is generally thicker 

shelled than L. subrotundata, and that thicker shell can deter predation (Trussel 2000, 

Boulding et al. 1999).  Because, L. sitkana has a thicker shell than a closely related 

species that does show plastic shell thickening, and that thicker shell increases L. 
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sitkana’s fitness, it seems possible that having a thick shell has become a fixed as 

opposed to a plastic trait in L. sitkana.   

 

The lack of shell thickening is also of note because it occurred in response to the same 

treatments that produced smaller shells and a reduction in feeding behavior.  In other 

species of intertidal gastropods, it has been argued that changes in shell size and 

thickness are passive results from a change in snail feeding behavior.  Bourdeau (2009) 

found that there was no difference in shell thickening between whelks that were exposed 

to predatory crabs and whelks that were starved.  He also found that as size decreased 

shell thickness increased, suggesting that a reduction in feeding may causes a change in 

shell size and thickness.  In my study, snails that were exposed to cues from crushed 

conspecifics + H. nudus crabs decreased shell growth but showed no difference in lip 

thickness among treatments. This shows that decreased shell growth does not always 

correlate to increased shell thickness.  Additionally, in the feeding and behavior study, 

snails that were exposed to crushed conspecifics + H. nudus crabs showed no change in 

feeding behavior.  Although these data were recorded in a separate study from the 

morphology data, this suggests that changes in morphology may be occurring separately 

from changes in feeding behavior.  

 

L. sitkana decreased shell length and width in response to the H. nudus + crushed 

conspecific treatment.  Based on H. nudus’s preference for small size classes of L. 

sitkana, this is not the response I was expecting to see.  However, this response is 

consistent with those found in other studies looking at the effect of Cancer productus on 
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L. sitkana shell growth.  These studies found that L. sitkana decreases shell growth in 

response to C. productus + crushed conspecifics, and that smaller snails were less likely 

to be consumed by C. productus (Yamada et al. 1998).  Although the time required for C. 

productus to break L. sitkana shells increased with snail size, larger snails, which have 

stronger shells, are still the preferred prey of C. productus (Yamada and Boulding 1998).  

Because L. sitkana alters its shell size in a way that reduces its risk to C. productus and 

not to H. nudus, it suggests that C. productus may pose more of a threat to L. sitkana than 

H. nudus.  

 

The effect of crushed conspecifics on snail feeding and habitat use in this study is similar 

to those found in previous experiments using different crab predators.  In one such study, 

L. sitkana decreased foraging in response to the combination of crushed conspecifics + C. 

productus (Yamada et al. 1998) but not in response to non-feeding C. productus.  These 

responses suggest that there is some type of alarm cue released by crushed conspecifics 

that activates the behavioral defenses in L. sitkana.  I found a similar decrease in snail 

feeding, but only when snails are exposed to just the crushed conspecific cue.  When 

snails were exposed to a combination of crushed conspecifics + H. nudus crabs, no 

change in feeding behavior was recorded.  L. sitkana habitat use changed when snails 

were exposed to either crushed conspecifics or the combination of H. nudus + crushed 

conspecifics.  Although there was no overall change in the frequency with which snails 

utilized habitat that was considered hiding, cues from predators did cause snails to spend 

more time in the upper corner of their watch glass.  This observation is consistent with 

previous work showing L. sitkana move upward within their habitat when exposed to 
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cues from C. productus feeding on L. sitkana snails (Yamada 1998, Rochette and Dill 

2000).  Based on C. productus’s occupancy of the mid to lower intertidal, moving up in 

the intertidal seems to be the appropriate response for L. sitkana to avoid C. productus.  It 

may be that crushed conspecifics serve as an indicator for L. sitkana to the presence of 

feeding C. productus.  

 

The effect of crushed conspecifics on snail feeding was nullified if the crushed 

conspecific cue was combined with a cue from H. nudus.  This finding is interesting as it 

raises the question of why L. sitkana would employ an inducible defense in the presence 

of crushed conspecifics but not employ that same defense when the crushed conspecific 

cue is combined with the presence of a potential predator.  One possible reason is that 

large L. sitkana may use the presence of H. nudus to determine whether its environment 

is safe.  Marco and Palmer (1991) found that the whelk Nucella lamellosa may use the 

presence of H. nudus to detect a safe environment and it is possible that L. sitkana is 

making a similar assessment.  Additionally, it would be maladaptive for the large L. 

sitkana to alter their behavior in response to conspecifics being crushed by H. nudus as 

only small snails can be consumed by H. nudus.  If L. sitkana senses crushed conspecifics 

anything could be consuming snails in the adjacent environment, including C. productus.  

This would be a high-risk situation for all L. sitkana snails.  However if L. sitkana senses 

crushed conspecifics and cues from H. nudus, this would represent a situation in which 

only small snails could be consumed.  This would represent a low risk environment for 

large snails and they would not be under selective pressure to respond plastically.  As 

many of the snails used in this study had a shell length of larger than 10mm, many of the 
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snails I used would not be under selective pressure to plastically respond.  However, 

this hypothesis is at odds with the reduction in shell size and change in habitat use I 

found when snails were exposed to a crushed conspecific + H. nudus cue.  If snails 

employ a morphological and crawl away defense in the presence of a certain combination 

of cues, it would seem logical for it to employ its feeding counterpart in response to those 

same cues.  Future studies could investigate how different size classes of snails alter their 

behavior to a range of cues associated with different levels of  predation risk.  
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CHAPTER 3: PREDATORS AND CONSPECIFICS ALTER THE TIME AND 

RATE AT WHICH A MARINE SNAILS DEPOSITS EMBRYO CAPSULES 

 

INTRODUCTION 

 

Many organisms alter their behavior, morphology, physiology, and life history in 

response to environmental threats (Agrawal 2001, Oyarzun and Strathman 2011).  The 

ability to properly assess and respond to threats in the environment can significantly 

increase an organism’s fitness.  Many studies have shown encapsulated embryos alter the 

time at which they hatch from their encapsulated state in response to predators 

(Warkentin 1999, Relyea 2003, Bernard 2006, Gomez-Mestre and Warkentin 2007, 

Gomez-Mestre et al. 2008b, Miner et al. 2010, Oyarzun and Strathmann 2011, Warkentin 

2011).  Changing the timing at which an individual transitions between early life-history 

stages can also have strong influences on an organism’s fitness later in life (Buckley et al. 

2005).  

 

Fitness at early life history stages can also be strongly influenced by paternal effects.  

Parents can alter many aspects of their offspring’s early life history, which can have 

profound consequences on offspring fitness later in life (Morgan and Christy 1994, 

Bridges and Heppel 1996, Sinervo and Doughty 1996, Dziminski and Roberts 2006).  

Parental behaviors can potentially alter offspring development rate, access to food, ability 

to avoid predators, and mate choice (Fox et al. 1996, Fox et al. 1997, Mousseau and Fox 

1998, Allen et al. 2008).  One of the ways adults influence their offspring’s fitness is by 
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altering the time at which they deposit their offspring (Lambrechts and Perret 2000, 

Hipfner et al. 2005, Visser et al. 2009, Ahola et al. 2012).  If cues from predators cause 

juveniles to alter aspects of their early life history, adults might tune into the same 

predator cues that juveniles respond to and manipulate their reproductive behavior 

accordingly. 

 

Changing the timing of egg deposition could potentially confer a fitness advantage 

similar to those associated with juveniles altering their time-to-hatching.  If adults can 

sense and respond to organisms that prey on their offspring, shifting the timing of egg 

deposition could alter when the juveniles switch from one life stage to another (Fig. 6).  

This shift could alter the type of predation risk juveniles are exposed to, and when they 

are exposed to that risk.  It is also possible that changing time-to-deposition could 

compound the effects of a change in time-to-hatching.  For example, in the case where 

predator presence delays hatching, any delay in depositing embryos would further delay 

when the juveniles enter the environment with the predators.   

 

The intertidal snail Nucella lamellosa is a prime organism to test whether parents can 

alter timing of egg deposition in response to predators that consume only embryos and 

juveniles.  Nucella lamellosa is an intertidal whelk that deposits numerous capsules with 

~20-60 embryos per capsule, attaching the capsules to rocks or other hard surfaces 

(Spight and Emlen 1976).  Larval development is direct and occurs exclusively within the 

capsule over the course of 1-2 months (Strathmann 1987).  Crawling juveniles hatch  
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Figure 6. Flow chart depicting possible switch-points during reproduction and embryonic 
development.  Abiotic and biotic factors could affect multiple reproductive and 
developmental stages, yielding cumulative shifts in time-to-hatching. 
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directly from the capsule, which limits their ability to relocate to a potentially safer 

environment.  Additionally, juvenile N. lamellosa exhibit hatching plasticity in response 

to predatory crabs, suggesting that plastic timing at early life-history stages is 

advantageous (Miner et al. 2010).  It may also be advantageous for adults to alter the 

timing of capsule deposition in response to these same predatory crabs.  With such 

limited mobility in the larval state, the parental effects might be paramount to the survival 

of the encapsulated juveniles.  Finally, adult N. lamellosa express inducible defenses in 

both their morphology and behavior, which indicates that adults can detect and respond to 

predators. 

 

Besides changing when egg capsules are deposited, adult N. lamellosa may also alter 

other aspects of reproductive effort, such as the number of capsules deposited, the energy 

invested into those capsules or the morphology of the capsules in response to predators.  

By lowering the number of capsules deposited in the presence of egg predators, an adult 

would potentially conserve energy that could go towards reproduction at a later date.  

Previous work has shown that predatory crabs alter the amount of time N. lamellosa 

embryos spend within their capsules (Miner et al. 2010).  Thus, parents may provide their 

embryos with variable levels of yolk nutrition to see them through different durations of 

embryo encapsulation.  Also, the capsules could be made with tougher walls or a 

particular shape to deter predators.  Adults of a closely related species, Nucella ostrina 

(formerly N. emarginata), produce egg capsules with walls of different thickness, and 

these thick-walled capsules are less likely to be preyed upon by isopods than thinner-
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walled capsules (Rawlings 1990).  It is possible that variation in the thickness of 

capsule walls is a plastic response to cues from isopods and we might expect to see a 

similar response in N. lamellosa.   

 

It is also possible that different densities of conspecific snails may alter some of these 

same characteristics, as N. lamellosa embryos alter their time to hatching in response to 

the presence of adult conspecifics (Miner et al. 2010).  Snail embryos exposed to elevated 

numbers of conspecifics hatched from the encapsulated state earlier than control 

embryos.  In this situation, adult snails might provision their offspring with less energy in 

an egg, as embryos will spend less time within the capsules.  Adults could then divert the 

“saved” energy into creating more offspring.  Additionally, elevated levels of 

conspecifics could indicate that the capsule environment is relatively safe.  If this were 

the case, parents may put less energy into capsule walls, as protection from predators 

would be less necessary. 

 

In this study, I investigated whether adult N. lamellosa alter the timing of capsule 

deposition, the number of capsules deposited, the energy invested into those capsules and 

the morphometry of the capsules.  I tested these factors in response to the environmental 

conditions known to induce hatching plasticity in embryonic N. lamellosa.  Specifically, I 

tested whether exposure to predators that only pose a threat to juveniles (Hemigrapsus 

oregonensis crabs and Idotea wosnesenskii isopods), non-predatory crabs, and adult 

conspecifics altered capsule time-to-deposition, number of capsules deposited, capsule 

energetics, and capsule size, shape, and wall strength.  
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METHODS 

 

I conducted three experiments to test whether different predators, non-predatory crabs, 

and adult conspecifics affect the reproductive strategy of Nucella lamellosa.  I measured 

time to deposition of the first capsule, rate of capsule deposition, capsule morphometry, 

capsule-wall strength, capsule-wall thickness and the caloric content of the capsules and 

embryos.   

 

General experimental design 

 

All three experiments had a similar design.  Experimental units were 10 L glass aquaria 

containing either 10 or 20 experimental adult N. lamellosa (depending on the experiment, 

details below) and a plastic container enclosing the treatment organisms (either predators, 

conspecifics, or no organisms).  Each aquarium was equipped with a filter that contained 

a sponge and pumice blocks to remove large particulate matter and provide surface area 

for microbes that convert nitrogenous waste to less toxic forms.  I removed the activated-

carbon filter, which might bind organic compounds released by predators or snails that 

serve as cues for adult whelks.  All aquaria were held in a 10°C cold room at Western 

Washington University, Bellingham, WA. 

 

Prior to each experiment, adult snails were collected when they were aggregating to 

reproduce from a local rocky beach (Marine Park, Bellingham, WA).  Crabs 
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(Hemigrapsus oregonensis and Pagurus granosimanus) and isopods (Idotea 

wosnesenskii) were collected from adjacent areas of the same beach.  Two other species 

of crabs (Pugettia spp., either P. producta or P. gracilis, and Petrolisthes eriomerus) 

were collected from a beach at Shannon Point Marine Center, Anacortes, WA.  Predators 

and whelks were transported to the Western Washington University campus in separate 

containers and held in separate 20 L aquaria until the start of the experiments (1-3 days).   

 

Experimental adult N. lamellosa were haphazardly added to each aquarium.  I then 

randomly assigned each aquarium a treatment and added the appropriate individuals 

(crabs, isopods, or adult conspecific snails) for that treatment.  Predators or conspecifics 

used to produce cues were enclosed in a mesh-lined plastic container to prevent them 

from directly contacting the experimental whelks and the egg capsules they produced.  

Control treatments had the plastic container with nothing in them. 

 

At the beginning of each experiment, I carefully inspected aquaria for capsules every day.  

When the first capsules were found, I removed them from their attachment point with a 

razor blade and saved them for future measurements.  I subsequently removed capsules 

every four days to minimize disrupting adults depositing capsules while maximizing 

temporal resolution.  I recorded the number of capsules removed from each tank, which 

allowed me to determine when whelks started depositing capsules and the average rate 

they laid capsules during the experiment.   
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I measured morphometry and wall strength of the first 10 capsules deposited in each 

tank.  If 10 or more capsules were initially collected, 10 capsules were chosen 

haphazardly and measured.  If fewer than 10 capsules were collected, I measured all 

capsules present on the first collection, and used capsules gathered on subsequent 

collections to total 10 capsules.  Capsule length and width were measured by taking 

digital photographs of each capsule and analyzing the images with Image J software 

(NIH, http://rsbweb.nih.gov/nih-image).  Capsule length was measured from the tip of the 

capsule plug to the base of the capsule where the stalk began (the stalk was not measured) 

and capsule width was measured at the midpoint of the length (Fig. 7).  I determined the 

shape of each capsule by calculating the ratio of length to width. 

 

Capsule wall strength was measured in two ways after the capsule was photographed.  I 

first measured intact capsules and then I measured previously punctured capsules because 

we assumed these measurements would provide us information about different aspects of 

capsule strength.  The force required to puncture an intact capsule was likely influenced 

by the strength of the capsule wall, capsule shape, and internal pressure of the capsule.  I 

predicted that this value would be more representative of how much force a predator 

would need to apply in the field to pierce a capsule.  The force required to pierce a 

punctured capsule was likely influenced primarily by the capsule wall strength because 

the internal fluid and eggs had been removed.  This value only tells us whether or not the 

material used to produce the capsule is resistant to puncturing.  Measuring the force 

required to puncture an intact capsule vs. a punctured capsule allowed me to determine 

whether or not it is that capsule wall material itself or the morphology of the intact  
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Figure 7. Digital photograph of a Nucella lamellosa embryo capsule showing the 
placement of the length and width measurements.  Width was measured at the point on 
half the total length.  "Shape" was calculated as width/length.  Capsules were punctured 
where the width and length measurement lines crossed. 
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capsule that account for an increase in force required to puncture an intact capsule.  To 

measure force needed to puncture intact capsules, each capsule was punctured with a 

blunt probe (0.75 mm in diameter) attached to a force transducer sensitive to 0.3 N.  To 

hold the capsule steady but not compress it, I used two small sheets of Plexiglas, one of 

which had a small capsule-sized well carved into it.  The sheets were separated with 

spacers.  A hole, 1 mm in diameter was drilled through the sheets immediately over and 

under the well, which allowed us to insert the probe through the hole and puncture the 

capsule.  Each capsule was placed in the well and held between the two Plexiglas sheets.  

I then inserted the probe and depressed it with the force transducer until the probe 

punctured the capsule.  All capsules were pierced near the middle of the capsule where 

the length and width measurements intersected (Fig. 7).  The maximum force generated 

was recorded.  To measure the force needed to pierce a punctured capsule (i.e., a capsule 

not filled with fluid), each capsule was punctured again in the middle of the capsule but a 

new location using the above methods, with the exception that I removed the spacers 

from between the Plexiglas sheets.  Without the spacers, the capsule was compressed 

between the two Plexiglas sheets and the internal contents were expelled before the 

capsule walls were punctured.   

 

After measurements were made on the first 10 capsules, all remaining capsules were 

frozen in an -80°C freezer for caloric analysis at a later date.  To measure the caloric 

density of embryos, embryos were removed from 5 thawed capsules using scissors and 

forceps and then dried to a constant mass at 60°C.  Dried embryos were then compressed



 37 
into pellet form.  Pellet masses ranged from approximately 2-15 mg.  These values 

were within the range of masses that the Phillipson microbomb calorimeter used in this 

study is designed to burn.  After pellets were weighed, they were burned using the bomb 

calorimeter following the technique described by Phillipson (1964).  The value for energy 

released during the embryo burning was compared to a benzoic acid standard that was 

used to calibrate the calorimeter.  Three pellets where burned per treatment or control 

tank and these values were averaged within each tank. 

 

Predator experiment 

 

Intertidal shore crabs Hemigrapsus oregonensis and isopods Idotea wosnesenskii were 

used in this study because they both prey on embryo capsules of Nucella ostrina 

(Rawlings 1990), a species closely related to N. lamellosa and often found in the same 

habitat.  Additionally, these same species are known to induce changes in time to 

hatching in encapsulated N. lamellosa (Miner et al. 2010).  I also verified in a pilot study 

that both species consume capsules of N. lamellosa.  I designed a fully factorial 2x2 

experiment to test whether H. oregonensis and I. wosnesenskii affected the timing or the 

rate at which N. lamellosa deposited capsules, as well as the morphometry or strength of 

the capsules.  Each factor, crab or isopod, had two levels, present or absent.  This resulted 

in the following four treatments: 1) crab only 2) isopod only, 3) crab and isopod, and 4) a 

no predator control. 
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The crab treatment consisted of 4-5 H. oregonensis crabs contained within each plastic 

container, the isopod treatment consisted of 2-3 I. wosnesenskii isopods, and the no 

predator control had no crabs or isopods within the container.  Each treatment had 6 

replicates for a total of 24 experimental aquaria.  All treatment organisms were starved 

except for the crabs in the H. oregonensis and “crab and isopod” treatment.  Within these 

containers the crabs consumed several to all of the isopods present.  This interaction was 

unintentional. 

 

Twenty experimental N. lamellosa were placed in each aquarium and the aquaria were 

monitored for a total of 16 days after the first capsules were laid.  Capsules were 

collected every four days yielding four separate collections of egg capsules per tank.  I 

recorded the time to first capsule deposition, the rate of capsule deposition, capsule 

morphometry, capsule wall strength and caloric value of the embryos for each aquarium. 

 

Crab species experiment 

 

To test whether different taxa of crabs induce reproductive plasticity in Nucella 

lamellosa, I designed a one-factor experiment with five treatment levels.  The five levels 

included: 1) H. oregonensis (seven crabs per aquarium), 2) Pugettia spp. (P. gracilis and 

P. producta; five crabs per aquarium), 3) Petrolisthes eriomerus (five crabs per 

aquarium), 4) Pagurus granosimanus (seven crabs per aquarium) and 5) a control 

treatment with no crabs present.  Crab numbers varied in an effort to have roughly equal 

crab biomass in each aquarium.  In a pilot study, I verified that H. oregonensis and 
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Pugettia spp. consume capsules and that P. eriomerus and P. granosimanus do not.  

Each treatment had five replicates yielding 25 experimental aquaria.  

 

20 experimental N. lamellosa were added to each aquarium, and aquaria were monitored 

for 16 days after the first capsules were deposited. Capsules were collected every four 

days yielding four separate collections of egg capsules per tank.  I measured the time 

elapsed in each aquarium until the first capsule was laid, average rate of capsule 

deposition, and capsule wall strength.  Capsule morphometry and the caloric value of the 

embryos were not measured because they were not significantly affected by the presence 

of predators in the predator study (see Results).  Unlike the previous experiment, we 

directly measured capsule wall thickness.  This was done by cutting a cross section from 

the middle of a capsule using a sharp, single-edged razor blade and taking a digital 

picture of it using a compound microscope at 1000X magnification.  Capsule wall 

thickness of each cross section was measured using imaging Image J software.  These 

measurements were done with remaining capsules that were not used for other 

measurements at the end of the study.  I measured up to ten capsules per aquaria, 

depending on how many capsules were available, and averaged these values within a 

tank.   

 

Conspecific density experiment 

 

To test whether different densities of conspecifics induce reproductive plasticity in N. 

lamellosa, I designed a one-factor experiment with three levels.  The three levels were 
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different densities of adult N. lamellosa:  1) high density (20 additional snails held in 

the plastic container), 2) low density (10 additional snails in the container), and 3) control 

(no additional snails in the container).  Each of the three treatments had 8 replicates, for a 

total of 24 aquaria.  

 

10 experimental N. lamellosa were in each aquarium and aquaria were monitored for 20 

days.  Capsules were collected every four days yielding five separate collections of egg 

capsules per tank.  I measured the time elapsed in each tank until the first capsule was 

laid, rate of capsule deposition, as well as the caloric value of the embryos.  Wall strength 

and capsule morphometry were not measured in this study because I expected changes in 

morphometry to be adaptations to predation risk and thus not affected by the presence of 

conspecifics. 

 

Analyses 

 

For all analyses of the predator experiment, I had two predictor variables: crab (two 

levels) and isopod (two levels).  For the crab species and conspecific density 

experiments, I had a single predictor variable:  crab species (5 levels) or conspecific 

density (3 levels).  

 

For the analyses of size, shape, thickness of wall, strength of capsules and capsule caloric 

value, I used ANOVA.  The response variables length, width, width/length, wall 

thickness of capsules, capsule energetics, force to pierce intact or punctured capsules 
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were averaged for each aquarium—the averages per tank were used because capsules 

were not independent of aquaria.   

 

I analyzed when whelks started depositing capsules with generalized linear models 

(GLM) with a Poisson error and an identity link.  The Poisson distribution was used to 

model the error because the response variable was an integer (number of days) and the 

variance increased with the mean.  The response variable was number of days to first 

observed capsules in an aquarium and was measured in 4 day intervals.  The first time I 

observed capsules during an experiment was assigned day 0, and I added 1 d to each 

observation because some treatments were all zero (with a variance of zero).  After 

analyses were complete, the 1 day shift was taken away to show the data in the form it 

was collected.  For the predator experiment, I used AIC values to compare the fully-

crossed model with reduced models to determine which factors best fit the data given the 

number of parameters in the model.  For the conspecific density and crab species 

experiment, both of which had a single factor with more than 2 levels, I tested whether 

each treatment differed from the control with a priori contrasts.  For the crab species 

experiment, I used one-tailed contrasts because whelks delayed depositing capsules when 

exposed to cues from predators, and I expected the same direction of response for other 

crab species.   

 

I analyzed the data for the rate at which whelks deposited capsules with generalized 

linear mixed-effects models (GLME) with a Gaussian error and an identity link—to 

account for repeatedly sampling each aquarium through time, I modeled aquarium as a 
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random variable.  The response variable was number of capsules collected at each 4-

day interval.  I used the same methods as with the analysis of when whelks started 

depositing capsules to determine which factors were important predictors and which 

treatments differed from controls.   
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RESULTS 

Predator experiment 

 

Crabs and the combination of crabs and isopods, but not isopods alone, affected the 

timing of capsule deposition (Fig. 8A).  The full model, which included the interaction 

between crabs and isopods, fit the data best for the number of parameters (Table 4).  

Compared to the control (no isopods or crabs), whelks delayed depositing capsules by 6.7 

d when exposed to cues from both crabs and isopods and 2.7 d when exposed to only 

crabs.  Snails exposed to just isopods did not delay timing of capsule deposition (Table 

5).   

 

Cues from crabs, but not isopods, affected the rate that whelks deposited capsules (Fig. 

8B).  The average rate of laying for the experiment was 12.8 capsules d-1 (± 1.8 SE) and 

whelks that were exposed to crabs laid capsules at a rate 50% less than those not exposed 

to crabs.  The model that best fit the data included crabs only (Table 6).  Compared to the 

treatments without crabs, whelks deposited fewer capsules when exposed to cues from 

crabs (Table 7).  
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Figure 8.  A) Mean number of days until capsules were first observed, and B) mean rate 
of capsule deposition by whelks exposed to cues from crabs and isopods. Whelks were 
exposed to cues from caged H. oregonensis (Crab), I. wosnesenskii (Isopod), both crabs 
and isopds (Both), or neither crabs nor isopods (Control).  Each treatment had six 
replicates.  Error bars represent one standard error. 
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Table 4.  Model comparisons for when whelks started to deposit capsules for the predator 
experiment. 
 

Model AIC* 

Predator experiment  

Crab × Isopod 93.2 

Crab 97.9 

Isopod 133.8 

Common intercept 139.2 

*The smallest Akaike information criteria (AIC) value indicates the most appropriate 

model given the number of parameters. 
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Table 5. T-test contrasts between treatments for when whelks started to deposit 
capsules within each of the three experiments. 

Effect Estimate SE z value P value 

Predator experiment     

Crab vs. no Crab 2.67 0.82 3.02 0.003 

Isopod vs. no Isopod ≈ 0.00 0.58 ≈ 0.0 1.000 

Crab × Isopod vs. Crab + Isopod 4.00 0.1.49 2.68 0.007 

Crab species experiment     

H. oregonensis vs. Control ≈ 0.00 0.85 ≈ 0.00 0.50* 

Pugettia spp. vs. Control -0.80 0.75  -1.07 0.86* 

P. granosimanus vs. Control 0.80 0.94 0.85 0.20* 

P. eriomerus vs. Control 4.00 1.23  3.24 0.0006* 

Conspecific density experiment     

Low density vs. Control -1.50 0.75 -2.00 0.045 

High vs. Control -1.50 0.75 -2.00 0.045 

*One-tailed tests, alternative hypothesis crab species > control. 
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Table 6.  Model comparisons for the rate at which whelks deposited capsules for the 
predator experiment. 

Model AIC 

Crab & isopod experiment  

Crab × Isopod 990.4 

Crab + Isopod 991.5 

Crab 989.5 

Isopod 996.9 

Common intercept 994.9 
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Table 7. T-test contrasts between treatments for the rate at which whelks deposited 
capsules within each of three experiments. 

Effect Estimate SE t value df P value 

Predator experiment      

Crab vs. no Crab -36.0 12.3 -2.94 22 0.010 

Crab species experiment      

H. oregonensis vs. Control -14.8 8.38 -1.77  0.046* 

Pugettia spp. vs. Control -3.5 8.38 -0.42  0.34* 

P. granosimanus vs. Control -16.4 8.38 -1.96  0.032* 

P. eriomerus vs. Control -17.5 8.38 -2.09  0.024* 

Conspecific density experiment      

Low density vs. Control -2.90 10.87 -0.27 21 0.79 

High vs. Control -4.20 10.87 -0.39 21 0.70 

*One-tailed tests, alternative hypothesis crab species < control. 
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Cues from crabs, isopods, and the combination of crabs and isopods did not affect the 

size or shape of capsules deposited during the experiment (Fig. 9) (Table 8).   Cues from 

crabs, isopods, and both crabs and isopods did not affect capsule strength (Fig. 10).  On 

average, the force required to pierce an intact capsule was 4.17 N (± 0.35 SE), and the 

force required to pierce a punctured capsule was 5.97 N (± 0.30 SE).  Force to pierce 

intact or punctured capsules was not significantly different for capsules exposed to crabs, 

isopods, or the combination of crab and isopod (Table 9).  Cues from crabs, isopods and 

crabs and isopods did not affect the energy invested into embryos (Fig 11) (Table 10).  

 

Crab species experiment 

 

Only cues from Petrolisthes eriomerus affected the timing of capsule deposition (Fig. 

12A).  Whelks started depositing capsules 4 d later when exposed to cues from P. 

eriomerus (Table 6).  Whelks exposed to the other three crabs, Hemigrapsus oregonensis, 

Pugettia spp., and Pagurus granosimanus, did not differ significantly from the control 

(Table 6).  Whelks exposed to cues from H. oregonensis started depositing capsules at the 

same time as whelks in the control, which was contrary to what we observed in the crab 

and isopod experiment.  
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Figure 9.  A) Mean length (mm), B) mean width (mm), and C) mean width/length or 
shape of capsules deposited by whelks exposed to cues from crabs and isopods. Whelks 
were exposed to cues from caged H. oregonensis (Crab), I. wosnesenskii (Isopod), both 
crabs and isopds (Both), or neither crabs nor isopods (Control).  Each treatment had six 
replicates.  Error bars represent one standard error. 
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Table 8.  Results of ANOVA for size and shape data of capsules deposited by whelks 
exposed to crabs and isopods.   

Effect df Sum of Squares F value P value 

Length     

Crab 1 0.39 1.27 0.27 

Isopod 1 0.11 0.37 0.55 

Crab × Isopod 1 0.30 0.97 0.34 

Residuals 19 5.84   

Width     

Crab 1 0.08 2.73 0.11 

Isopod 1 0.00005 0.002 0.97 

Crab × Isopod 1 0.02 0.71 0.41 

Residuals 19 0.60   

Width/Length     

Crab 1 0.0001 0.49 0.49 

Isopod 1 0.0003 1.12 0.30 

Crab × Isopod 1 < 0.0001 0.002 0.96 

Residual 19 0.004   
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 Figure 10. Mean force (N) required to pierce A) intact-capsules and B) punctured-
capsules deposited by whelks exposed to cues from crabs and isopods. Whelks were 
exposed to cues from caged H. oregonensis (Crab), I. wosnesenskii (Isopod), both crabs 
and isopds (Both), or neither crabs nor isopods (Control).  Each treatment had six 
replicates.  Error bars represent one standard error. 
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Table 9.  Results of ANOVA for strength of capsules deposited by whelks exposed to 
crabs and isopods.   

Effect df Sum of Squares F value P value 

Intact capsules     

Crab 1 4.27 1.40 0.25 

Isopod 1 0.022 0.007 0.93 

Crab × Isopod 1 3.01 0.99 0.33 

Residuals 20 60.98   

Punctured capsules     

Crab 1 3.15 1.39 0.25 

Isopod 1 2.50 1.10 0.31 

Crab × Isopod  0.19 0.08 0.77 

Residuals 20 45.29   
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Figure 11.  Mean caloric value (kJ mg-1) of embryos extracted from egg capsules. Whelks 
were exposed to cues from caged H. oregonensis (Crab), I. wosnesenskii (Isopod), both 
crabs and isopds (Both), or neither crabs nor isopods (Control).  Each treatment had six 
replicates.  Error bars represent one standard error. 
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Table 10. Results of ANOVA for energetic investment by whelks exposed to crabs and 
isopods. 
 
Effect df Sum of Squares F value P value 

Predators     

Treatment 2 0.00004 0.63 0.54 

Residuals 21 0.0006   
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Figure 12.  A) Mean number of days until capsules were first observed, and B) mean rate 
of capsule deposition by whelks exposed to cues from different species of crab.  Whelks 
were exposed to cues from H. oregonensis, Pugettia spp., P. granosimanus, P. eriomerus, 
and no crabs (control).  Each treatment had five replicates.  Error bars represent one 
standard error. 
 

 

H. oregonensis Pugettia  spp. P. granosimanus P. eriomerus Control 

Crab Species 
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Cues from crab species affected the rate that whelks deposited capsules (Fig 12B).  The 

average rate of laying for the experiment was 4.3 capsules d-1 (± 0.8 SE).  Compared to 

the control, H. oregonensis, P. granosimanus, and P. eriomerus reduced the rate of 

capsule deposition by 50%, 61%, and 65%, respectively (Table 8).  Pugettia spp. had no 

effect on the rate of capsule deposition (Table 8).   

 

Cues from crab species did not affect the strength of capsules (Fig. 13).  The average 

force to pierce an intact capsule was 4.60 N (± 0.36 SE) and to pierce a punctured capsule 

was 4.36 N (± 0.37 SE).  Force to pierce intact or punctured capsules was not 

significantly different for the different crab treatments (Table 11).   

 

Conspecific density experiment 

 

Conspecific density affected the timing of capsule deposition (Fig. 14A).  Whelks started 

depositing capsules 4 d sooner when exposed to cues from caged conspecifics (low and  
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Figure 13.  Mean force (N) required to pierce A) intact-capsules and B) punctured-
capsules deposited by whelks exposed to cues from different species of crab. Whelks 
were exposed to cues from H. oregonensis, Pugettia spp., P. granosimanus, P. eriomerus, 
and no crabs (control).  Each treatment had five replicates.  Error bars represent one 
standard error. 

 

H. oregonensis Pugettia  spp. P. granosimanus P. eriomerus Control 

Crab Species 
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Table 11.  Results of ANOVA model for strength of capsules deposited by whelks 
exposed to different species of crab.   

Effect df Sum of Squares F value P value 

Intact capsules     

Treatment 4 9.72 0.63 0.65 

Residuals 18 69.30   

Punctured capsules     

Treatment 4 9.56 0.72 0.59 

Residuals 18 59.74   
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Figure 14.  A) Mean number of days until capsules were first observed, and B) mean rate 
of capsule deposition by whelks exposed to cues from three densities of adult 
conspecifics.  Whelks were exposed to cues from 20 additional adult whelks (high 
density), 10 additional adult whelks (low density), or no additional whelks (control).  
Each treatment had eight replicates.  Error bars represent one standard error. 
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high density treatments).  Both the low and high density treatment differed significantly 

from the control but were not different from each other (Table 6).  

 

Cues from conspecifics did not affect the rate at which whelks deposited capsules (Fig. 

14B).  The average rate of laying for the experiment was 8.75 capsules d-1 (± 1.0 SE).  

Both the low and high density treatment did not differ significantly from the control 

(Table 8).   

 

Cues from conspecifics also did not affect the energy invested into embryos (Fig. 15).  

On average, embryos had an energy density of 0.024 kJ mg-1 (± 0.0011 SE).  Neither the 

low nor high density treatments were significantly different from the control (Table 12). 
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Figure 15. Mean energy density (kJ mg-1) of embryos extracted from egg capsules. 
Whelks were exposed to cues from 20 additional adult whelks (high density), 10 
additional adult whelks (low density), or no additional whelks (control).  Each treatment 
had eight replicates.  Error bars represent one standard error. 
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Table 12. Results of ANOVA for energetic investment by whelks exposed to different 
densities of conspecifics. 

Effect on Caloric Density df 

Sum of 

Squares F value P value 

Conspecifics         

Treatment 3 0.00002 0.3 0.83 

Residuals 15 0.0004   
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DISCUSSION 

 

Cues from crabs affected the timing and rate at which whelks deposited capsules.  

However, the threat posed by crabs to capsules poorly predicted which species of crab 

would alter when, and at what rate, whelks deposited capsules.  Of the two species I 

tested that consume capsules, Hemigrapsus oregonensis and Pugettia spp., only H. 

oregonensis affected deposition of capsules.  In the predator experiment, cues from the 

crab H. oregonensis delayed when whelks began to deposit capsules by 2.7 d and reduced 

the rate of deposition by 50%.  In the crab species experiment, cues from H. oregonensis 

also reduced the rate of deposition by 50%, but did not alter the timing of deposition.  

Both of the species I tested that do not consume capsules, Petrolisthes eriomerus and 

Pagurus granosimanus, reduced the rate of deposition, and P. eriomerus also delayed 

when whelks deposited capsules.   

 

The responses to cues from crabs and whelks that I observed during our experiments are 

similar to the responses juveniles exhibit when they hatch from the capsules (Miner et al. 

2010).  Cues from the crab H. oregonensis, one of the same species used in this study, 

delayed juvenile hatching by about 4 d.  Cues from adult conspecifics accelerated 

juvenile hatching by about 6 d.  If densities of crabs and adult conspecifics are constant 

over an extended period of time, the effects on plastic time to hatching and time to 

deposition might be additive as both maternal capsule deposition and juvenile time-to-

hatching were shifted in the same direction (Fig. 5).  This emphasizes the need to study 
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how biotic cues affect multiple switch points before hatching to determine the 

magnitude and direction that these factors will alter hatching in nature.   

 

The isopod, Idotea wosnesenskii affected the timing and rate of capsule deposition, but 

only synergistically with crabs.  Whelks deposited capsules at a similar time and rate in 

the control and isopod treatments.  However, the delay of capsule deposition and 

reduction of deposition rate were both significantly stronger in the crab and isopod 

treatment than in the crab treatment alone.  A likely explanation for these results is that 

crabs consumed isopods while in the enclosure.  Prey often show a greater response to 

feeding predators than non-feeding predators (e.g., Appleton and Palmer 1988; Griffiths 

and Richardson 2006; Smee and Weissburg 2006; Schoeppner and Relyea 2009a and b).  

During our experiment, crabs consumed many of the isopods in the treatment that 

included both predators, and likely induced a stronger response from whelks than in the 

starved crab treatment.   

 

There was no evidence that the isopod I. wosnesenskii, or any of the four species of crabs, 

induced a response in capsule size, shape or strength.  This is an interesting finding as 

other species of Nucella deposit capsules with wall thicknesses that directly correlate to 

the presence of predatory isopods (Rawlings 1990).  Additionally, thicker walls make 

encapsulated embryos more resistant to predation (Rawlings 1994).  My findings suggest 

that variation in capsule wall thickness and strength are not influenced by cues from 

predators present at capsule deposition.  Variation in capsule wall thickness may be 

caused by selection in genetically isolated snail populations exposed to different levels of 
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capsule predation or influenced by other environmental factors prior to capsule 

deposition.   A previous study showed that N. lamellosa is capable of increasing the 

number of eggs that it lays when it is given access to elevated levels of food (Spight and 

Emlen 1976).  It is possible that nutrition could also influence capsule wall properties. 

 

Cues from conspecifics affected the timing but not rate at which whelks deposited 

capsules.  Whelks in the low- and high-density treatments deposited capsules 4 d sooner 

than whelks in the control treatment.  The similar effect in the low- and high-density 

treatments suggests that N. lamellosa is sensitive to lower densities than those used in our 

experiment.  Because whelks aggregate to reproduce and the timing of this aggregation 

varies greatly among sites in the inland waters of Washington (Spight and Emlen 1976; 

Strathmann 1987), there is very likely chemical communication among whelks to signal 

reproduction.  Additionally, high densities of adult whelks may indicate that there will be 

high levels of competition among juveniles upon hatching.   

 

Previous studies showed that: a) encapsulated N. lamellosa will alter the time that they 

spend in an encapsulated state in response to crabs, isopods and conspecifics and that b) 

there is no change in the growth rate of encapsulated snails between the above treatments 

(Miner et al. 2010).  Due to this change in time to hatching and no change in growth rate, 

it seemed likely that parents would provide different levels of energy to the encapsulated 

embryos to provision them through their plastic encapsulation time.  However, this study 

shows that there is no difference in the amount of energy invested into each capsule.  

Further studies investigating the metabolic rate of encapsulated snails, the energy 
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provided to individual embryos, the number of embryos per capsule or the size of 

embryos at hatching could clarify how adult snails invest a similar amount of energy into 

capsules to see their embryos through different durations of encapsulation or the cost of 

delayed hatching.  

 

This study shows that adults can respond to potential predators their offspring may 

encounter but pose no threat to the adults themselves.  I show that snails can respond to 

these threats by altering the time of capsule deposition as well as how many capsules are 

deposited.  Adult snails also responded to organisms that do not pose a threat to 

themselves or their offspring.  Some of the species of crabs used in the crab study do not 

prey on juvenile snails or snail capsules, yet induced a change in adult snails reproductive 

behavior.  I also show that adult N. lamellosa alter their reproductive behavior in 

response to elevated densities of conspecific snails.  All shifts in reproductive timing by 

adults were in the same direction as shifts in embryonic snails’ time of hatching seen in 

other studies.   This highlights the importance of studying how biotic cues affect multiple 

life-history stages of the same organism. 
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CHAPTER 4: CONCLUSION 

In this work I tested two marine gastropods’ responses to cues from predatory crabs and 

isopods, cues from non-predatory crabs, cues from crushed conspecifics, and cues from 

different densities of live conspecifics.  I showed that these snails exhibit an array of 

responses to different cues from their environment.   Some of these responses appear to 

confer a fitness advantage while others do not.   

 

In my Littorina study, I tested how Littorina sitkana responds to Hemigrapsus nudus and 

crushed conspecifics.  I showed that L. sitkana snails alter their shell size in response to 

the combined cues of H. nudus and crushed conspecifics but do not alter their shell 

thickness.  I also found that snails crawl upward within their habitat and decrease feeding 

in response to cues associated with predation.  This study also showed that a decrease in 

shell size does not necessarily cause an increase in shell thickness as previous studies 

have suggested.   

 

In my Nucella study, I tested how adult Nucella lamellosa alter their reproductive 

behavior in response to cues from organisms that do and do not prey on encapsulated 

juvenile snails, as well as how these same adults respond to different densities of 

conspecific snails.  I show that adults will delay when capsules are deposited as well as 

the rate at which these capsules are deposited in response to cues from some capsule 

predators.  This study also demonstrates that adult N. lamellosa are capable of altering 
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their reproductive behavior in response to organisms that pose no threat to themselves, 

but do pose a serious threat to their offspring.  However, adult N. lamellosa will employ 

these same responses to some species of crabs that are not capsule predators.  The reason 

for employing these responses in unclear.  Its possible that there are other factors 

involved with this response that were not taken into consideration in this study, such as 

the fitness of later life history stages.  It is also possible that these are simply over-

generalized, maladaptive responses.   I also show that N. lamellosa will accelerate the 

time at which they deposit their egg capsules when exposed to elevated levels of 

conspecifics.   

 

These findings show that N. lamellosa responds to biotic cues that can affect the fitness 

of their offspring and alter some aspects of their reproductive behavior accordingly.  

Additionally, juveniles and adults shift hatching and capsule deposition in the same 

direction when exposed to the same biotic cues (Miner et al. 2010).  This highlights the 

importance of looking at how certain cues affect multiple life history switch points of an 

organism.
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